949 resultados para P2X(7) receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although ATP and P2X receptor activity have been lately associated with epilepsy, little is known regarding their exact roles in epileptogenesis. Temporal-lobe epilepsy (TLE) in rat was induced by pilocarpine in order to study changes of hippocampal P2X(2), P2X(4) and P2X(7) receptor expression during acute, latent or chronic phases of epilepsy. During acute and chronic phases increased P2X(7) receptor expression was principally observed in glial cells and glutamatergic nerve terminals, suggesting participation of this receptor in the activation of inflammatory and excitotoxic processes during epileptogenesis. No significant alterations of hippocampal P2X(2) and P2X(4) receptor expression was noted during the acute or latent phase when compared to the control group, indicating that these receptors are not directly involved with the initiation of epilepsy. However, the reduction of hippocampal P2X(4) receptor immunostaining in the chronic phase could reflect neuronal toss or decreased GABAergic signaling. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X(2)-immunoreactive (IR) neurons of the rat ileum. Methods The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X(2) receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. Results Following I/R-i, we observed a decrease in P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X(2) receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X(2) and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X(2) receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X(2) receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X(2)-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X(2)-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. Conclusions These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X(2) receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X(2)-IR enteric neurons that could result in alterations in intestinal motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frizzled (FZD) receptors have a conserved N-terminal extracellular cysteine-rich domain that interacts with Wnts and co-expression of the receptor ectodomain can antagonize FZD-mediated signalling. Using the ectodomain as an antagonist we have modulated endogenous FZD7 signalling in the moderately differentiated colon adenocarcinoma cell line, SK-CO-1. Unlike the parental cell line, which grows as tightly associated adherent cell clusters, the FZD7 ectodomain expressing cells display a spread out morphology and grow as a monolayer in tissue culture. This transition in morphology was associated with decreased levels of plasma membrane-associated E-cadherin and β-catenin, localized increased levels of vimentin and redistribution of α6 integrin to cellular processes in the FZD7 ectodomain expressing cells. The morphological and phenotype changes induced by FZD7 ectodomain expression in SK-CO-1 cells is thus consistent with the cells undergoing an epithelial-to-mesenchymal-like transition. Furthermore, initiation of tumor formation in a xenograft tumor growth assay was attenuated in the FZD7 ectodomain expressing cells. Our results indicate a pivotal role for endogenous FZD7 in morphology transitions that are associated with colon tumor initiation and progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to
translocate into cytoplasm by siglec receptor-mediated internalisation.

Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.

Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.

Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic
space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To examine whether the ob/ob mouse model of obesity is accompanied by enteric nervous system abnormalities such as altered motility. METHODS: The study examined the distribution of the P2X(2) receptor (P2X(2)R) in myenteric neurons of female ob/ob mice. Specifically, we used immunohistochemistry to analyze the co-expression of the P2X(2)R with neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and calretinin (CalR) in neurons of the small intestine myenteric plexus in ob/ob and control female mice. In these sections, we used scanning confocal microscopy to analyze the co-localization of these markers as well as the neuronal density (cm(2)) and area profile (mu m(2)) of P2X(2)R-positive neurons. In addition, enteric neurons were labeled using the nicotinamide adenine dinucleotide (NADH) diaphorase method and analyzed with light microscopy as an alternate means by which to analyze neuronal density and area. RESULTS: In the present study, we observed a 29.6% increase in the body weight of the ob/ob animals (OG) compared to the control group (CG). In addition, the average small intestine area was increased by approximately 29.6% in the OG compared to the CG. Immunoreactivity (IR) for the P2X(2)R, nNOS, ChAT and CaIR was detectable in the myenteric plexus, as well as in the smooth muscle, in both groups. This IR appeared to be mainly cytoplasmic and was also associated with the cell membrane of the myenteric plexus neurons, where it outlined the neuronal cell bodies and their processes. P2X(2)R-IR was observed to co-localize 100% with that for nNOS, ChAT and CaIR in neurons of both groups. In the ob/ob group, however, we observed that the neuronal density (neuron/cm(2)) of P2X(2)R-IR cells was increased by 62% compared to CG, while that of NOS-IR and ChAT-IR neurons was reduced by 49% and 57%, respectively, compared to control mice. The neuronal density of CaIR-IR neurons was not different between the groups. Morphometric studies further demonstrated that the cell body profile area (mu m(2)) of nNOS-IR, ChAT-IR and CaIR-IR neurons was increased by 34%, 20% and 55%, respectively, in the OG compared to controls. Staining for NADH diaphorase activity is widely used to detect alterations in the enteric nervous system; however, our qualitative examination of NADH-diaphorase positive neurons in the nnyenteric ganglia revealed an overall similarity between the two groups. CONCLUSION: We demonstrate increases in P2X(2)R expression and alterations in nNOS, ChAT and CaIR IR in ileal myenteric neurons of female ob/ob mice compared to wild-type controls. (c) 2012 Baishideng. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interleukin 7 receptor (IL-7R) plays a crucial role in early B- and T-cell development. It consists of a unique a chain and a common gamma chain [IL-2 receptor gamma chain (IL-2Rgamma)]. Gene inactivation of IL-7, IL-7R, and IL-2Rgamma resulted in severe impairment of B and T lymphopoiesis in mice. In addition, IL-2Rgamma-deficient mice lack gammadelta T cells in the skin and have the impaired development of natural killer (NK) cells and intraepithelial lymphocytes. To explore the role of IL-7/IL-7R system in gammadelta T- and NK-cell development, we have generated and analyzed IL-7R-deficient mice. gammadelta T cells were absent from skin, gut, liver, and spleen in the deficient mice. In contrast, alphabeta T and B cells were detected in reduced, but certain, numbers, and NK cells developed normally. The gammadelta T-cell development in fetal and adult thymus was also completely blocked. These results clearly demonstrate that the signal from IL-7R is indispensable for gammadelta T-cell development in both thymic and extrathymic pathways. On the contrary, it is suggested that NK-cell development requires cytokine(s) other than IL-7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junctions are connexin-formed channels that play an important role in intercellular communication in most cell types. In the immune system, specifically in macrophages, the expression of connexins and the establishment of functional gap junctions are still controversial issues. Macrophages express P2X(7) receptors that, once activated by the binding of extracellular ATP, lead to the opening of transmembrane pores permeable to molecules of up to 900 Da. There is evidence suggesting an interplay between gap junctions and P2 receptors in different cell systems. Thus, we used ATP-sensitive and -insensitive J774.G8 macrophage cell lines to investigate this interplay. To study junctional communication in J774-macrophage-like cells, we assessed cell-to-cell communication by microinjecting Lucifer Yellow. Confluent cultures of ATP-sensitive J774 cells (ATP-s cells) are coupled, whereas ATP-insensitive J774 cells (ATP-i cells), derived by overexposing J774 cells to extracellular ATP until they do not display the phenomenon of ATP-induced permeabilization, are essentially uncoupled. Western-blot and reverse-transcription polymerase chain reaction assays revealed that ATP-s and ATP-i cells express connexin43 (Cx43), whereas only ATP-s cells express the P2X(7) receptor. Accordingly, ATP-i cells did not display any detectable ATP-induced current under whole-cell patch-clamp recordings. Using immunofluorescence microscopy, Cx43 reactivity was found at the cell surface and in regions of cell-cell contact of ATP-s cells, whereas, in ATP-i cells, Cx43 immunoreactivity was only present in cytosolic compartments. Using confocal microscopy, it is shown here that, in ATP-s cells as well as in peritoneal macrophages, Cx43 and P2X(7) receptors are co-localized to the membrane of ATP-s cells and peritoneal macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that adenosine 5'-triphosphate (ATP) is a cotransmitter in the heart. Additionally, ATP is released from ischemic and hypoxic myocytes. Therefore, cardiac-derived sources of ATP have the potential to modify cardiac function. ATP activates P2X(1-7) and P2Y(1-14) receptors; however, the presence of P2X and P2Y receptor subtypes in strategic cardiac locations such as the sinoatrial node has not been determined. An understanding of P2X and P2Y receptor localization would facilitate investigation of purine receptor function in the heart. Therefore, we used quantitative PCR and in situ hybridization to measure the expression of mRNA of all known purine receptors in rat left ventricle, right atrium and sinoatrial node (SAN), and human right atrium and SAN. Expression of mRNA for all the cloned P2 receptors was observed in the ventricles, atria, and SAN of the rat. However, their abundance varied in different regions of the heart. P2X(5) was the most abundant of the P2X receptors in all three regions of the rat heart. In rat left ventricle, P2Y(1), P2Y(2), and P2Y(14) mRNA levels were highest for P2Y receptors, while in right atrium and SAN, P2Y(2) and P2Y(14) levels were highest, respectively. We extended these studies to investigate P2X(4) receptor mRNA in heart from rats with coronary artery ligation-induced heart failure. P2X(4) receptor mRNA was upregulated by 93% in SAN (P < 0.05), while a trend towards an increase was also observed in the right atrium and left ventricle (not significant). Thus, P2X(4)-mediated effects might be modulated in heart failure. mRNA for P2X(4-7) and P2Y(1,2,4,6,12-14), but not P2X(2,3) and P2Y(11), was detected in human right atrium and SAN. In addition, mRNA for P2X(1) was detected in human SAN but not human right atrium. In human right atrium and SAN, P2X(4) and P2X(7) mRNA was the highest for P2X receptors. P2Y(1) and P2Y(2) mRNA were the most abundant for P2Y receptors in the right atrium, while P2Y(1), P2Y(2), and P2Y(14) were the most abundant P2Y receptor subtypes in human SAN. This study shows a widespread distribution of P2 receptor mRNA in rat heart tissues but a more restricted presence and distribution of P2 receptor mRNA in human atrium and SAN. This study provides further direction for the elucidation of P2 receptor modulation of heart rate and contractility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psychotic symptoms are common in Alzheimer's disease (AD) and have a negative impact oil quality of life. It is suggested that psychotic symptoms may be attributed to genetic risk factors which are revealed during neurodegeneration. CHRNA7, the gene for the alpha 7 nicotinic acetylcholine receptor, has been associated with schizophrenia in linkage and association Studies. Hence we investigated single SNPs and haplotypes in CHRNA7 in relation to AD with psychosis in a large, well-characterised and previously described cohort within the Northern Ireland population. A significant association between delusions and the T allele of rs6494223 (P = 0.014, OR = 1.63, Cl 1.22-2.17) was found. This suggests that the alpha 7 receptor may be a suitable target for the treatment of AD with psychosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol-dependent individuals who reduce or discontinue its use may present Alcohol Withdrawal Syndrome, which is characterized by unpleasant signs and symptoms, such as anxiety, that may trigger relapses. Ethanol, a psychotropic drug, is able to promote behavioral and neurophysiological changes, acting on different neurotransmitter systems, including the serotonergic, which has also been directly associated with aversive states, including anxiety. This study aimed to investigate the participation of type 7 serotonin receptor (5-HT7) of the dorsal periaqueductal gray (DPAG) on basal experimental anxiety and that caused by ethanol withdrawal. For this, 75-100 days old Wistar rats were subjected to two experiments. On the first one, animals underwent stereotactic surgery for implantation of guide cannulas used for administration of the drug directly into the DPAG. After seven days, the animals received doses of 2.5; 5 and 10 nmols of type 7 receptor antagonist SB269970 (SB) or vehicle intra-DPAG and, ten minutes after, they were exposed to elevated plus maze (EPM). In the following day, the animals were submitted to the same treatment and tested in the open field (OF). In the second experiment, animals received increasing concentrations (2%, 4%, 6%) of ethanol as the only source of liquid diet or water (control group), both with free access to chow. Seventy two hours and ninety six hours after the ethanol withdrawal, animals received SB (2.5 and 5.0 nmols) intraDPAG ten minutes before the test in the LCE and OF, respectively. In experiment 1, the dose of antagonist 10 nmols was able of reversing the anxiety generated by EPM. In the experiment 2, ineffective SB doses on the LCE (2.5 and 5.0 nmol) were not able to reverse the anxiety caused by the ethanol withdrawal in the EPM, although the dose of 2.5 nmols of SB has reversed its hipolocomotor effect in this test. This result suggests that the 5-HT7 receptor is involved in the modulation of the basal experimental anxiety in rats, but not in the anxiety caused by ethanol withdrawal in the DPAG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChR) exert pivotal roles in synaptic transmission, neuroprotection and differentiation. Particularly, homomeric alpha 7 receptors participate in neurite outgrowth, presynaptic control of neurotransmitter release and Ca(2+) influx. However, the study of recombinant alpha 7 nAChRs in transfected cell lines is difficult due to low expression of functional receptor channels. We show that PC12 pheochromocytoma cells induced to differentiation into neurons are an adequate model for studying differential nAChR gene expression and receptor activity. Whole-cell current recording indicated that receptor responses increased during the course of differentiation. Transcription of mRNAs coding for alpha 3, alpha 5, alpha 7, beta 2 and beta 4 subunits was present during the course of differentiation, while mRNAs coding for alpha 2, alpha 4 and beta 3 subunits were not expressed in PC12 cells. alpha 7 subunit expression was highest following 1 day of induction to differentiation. Activity of alpha 7 nAChRs, however, was most elevated on day 2 as revealed by inhibition experiments in the presence of 10 nM methyllycaconitine, rapid current decay and receptor responsiveness to the alpha 7 agonist choline. Increased alpha 7 receptor activity was noted when PC12 were induced to differentiation in the presence of choline, confirming that chronic agonist treatment augments nAChR activity. In summary, PC12 cells are an adequate model to study the role and pharmacological properties of this receptor during neuronal differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor -chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.